Advanced Mechanics: Resit

Semester Ib 2021-2022

April 13th, 2022

Please note the following rules:

- you are not allowed to use the book or the lecture notes, nor other notes or books
- you have 2 hours to complete the exam
- please write your student number on each paper sheet you hand in
- please raise your hand for more paper or to ask a question
- some useful equations are provided on the next page
- please show your work, results that are provided without derivation will be discounted

Points for each problem:

- Problem 1: 15 points
- Problem 2: 25 points
- Problem 3: 10 points

Useful equations

- Euler-Lagrange equations (for problems 1 and 2):

$$
\begin{equation*}
\frac{\partial L}{\partial q_{J}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{J}}\right)=0 \tag{0.1}
\end{equation*}
$$

- Principal moments of inertia (for problem 3):

$$
\begin{align*}
& \mathrm{I}_{\mathrm{xx}}=\int \mathrm{dm}\left(y^{2}+z^{2}\right) \tag{0.2}\\
& \mathrm{I}_{\mathrm{yy}}=\int \operatorname{dm}\left(x^{2}+z^{2}\right) \tag{0.3}\\
& \mathrm{I}_{\mathrm{zz}}=\int \operatorname{dm}\left(x^{2}+y^{2}\right) \tag{0.4}
\end{align*}
$$

- Volume element in polar coordinates, ρ, ϕ, z, (for problem 3):

$$
\begin{equation*}
d V=\rho d \rho d \phi d z \tag{0.5}
\end{equation*}
$$

where $x=\rho \cos \phi, y=\rho \sin \phi$.

- Integrals of sinusoidal functions (for problem 3):

$$
\begin{equation*}
\int_{0}^{2 \pi} \sin ^{2} \phi d \phi=\pi \tag{0.6}
\end{equation*}
$$

- Volume of a cone of height h and base radius R (for problem 3):

$$
\begin{equation*}
V=\frac{\pi R^{2} h}{3} \tag{0.8}
\end{equation*}
$$

Figure 1.

Problem 1

Consider two masses m_{1} and m_{2} as in Fig. 1, connected by a string of length ℓ. The first mass $\left(m_{1}\right)$ moves on a horizontal plane (no friction). The second mass $\left(m_{2}\right)$ moves in a vertical plane. Compute the Lagrangian for the system and obtain the equations of motion for the two masses.
Note: for clarity, please don't forget to define your coordinates of choice.
[15 points]

Problem 2

Consider a sphere of radius a and moment of inertia I that rolls without slipping on the surface of a cylinder of radius R as in Fig. 2.
(1a) Compute the Lagrangian for the sphere using the variables shown in Fig. $2(r, \Theta, \Phi)$. You do not need to specify what the moment of inertia is, you can leave it as I throughout the calculations.

[7 points]

(1b) Write the constraint equations (i.e. the equations relating r, Θ and Φ); [8 points]
(1c) Using your results in (1a) and (1b), along with Euler-Lagrange equations, obtain the following equation:

$$
\begin{equation*}
\dot{\Theta}^{2}=\frac{10}{7} \frac{g}{(R+a)}(1-\cos \Theta) \tag{0.9}
\end{equation*}
$$

where $\dot{\theta} \equiv \frac{d \Theta}{d t}$. Hint: in order to obtain the final result, you can use the following trick to perform the necessary integral: $\ddot{\Theta}=\dot{\Theta} \frac{d \dot{\Theta}}{d \Theta}$.
[10 points]

Figure 2. Notice: in the figure we have $r=R+a$.

Problem 3

Consider the cone in Fig. 3 (uniform density ρ_{0}, mass M, height h, base radius R). Compute the principal moments of inertia, $\mathrm{I}_{\mathrm{xx}}, \mathrm{I}_{\mathrm{yy}}$ and I_{zz} (please refer to Fig. 3 and to the equations provided in the formula sheet).
[10 points]

Figure 3.

